Carbon-13 NMR of N-Substituted 2,4,6-Trimethylpyridinium Salts

Salman R. Salman,* A. H. Hassan, and M. A. R. Khayat†
Chemistry Department, College of Science, University of Baghdad, Baghdad, Iraq
†Chemistry Department, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
(Received June 9, 1987)

Synopsis. Carbon-13 chemical shifts of twelve *N*-substituted, 2,4,6-trimethylpyridinium (TMP) salts were determined. The data have been used to estimate the relative ring current (RRC) of the *N*-substituents on the pyridinium ring.

Verhoeven et al.^{1–5)} studying the UV spectra of some substituted pyridinium salts has pointed out that when R=phenyl, their UV spectra display a charge transfer band. Balaban et al.^{6,7)} utilized the proton NMR spectral data of some N-substituted TMP salts to estimate the relative ring current (RRC) of these systems.

Carbon-13 chemical shift, recieved little attention in this respect.^{8,9)} In this paper twelve new *N*-substituted TMP perchlorates (Scheme 1) were prepared¹⁰⁾ and their carbon-13 chemical shifts have been determined. Equation 2 is suggested for calculating RRC of the R group, using carbon-13 chemical shift of carbons 2 and 4.

$$H_3C$$
 N
 $CH_3(\gamma)$
 $CH_3(\alpha)$
 R

Results and Discussion

Proton decoupled, as well as proton-coupled, carbon-13 spectra of the compounds **1—12** were recorded. Assignment of the chemical shift of these compounds (Tables 1 and 2) are based on; (i) the application of carbon-13 chemical shift of amines (RNH₂),¹¹⁾ (ii) by applying the additivity rule, and substitution parameters, for the phenyl,^{12,13)} and the pyridinium rings,¹⁴⁾ and (iii) using off-resonance spectra of those compounds to determine the quaternary and protonated carbons.

Table 1 shows the trend of carbon-13 chemical shift of carbon 2,6, and the methyl carbons. It demonstrates the pronounced ring current effect of the N-aza aromatic ring on the chemical shift of those carbons.

It is accepted that analogous compounds are not coplanar. Thus the α -methyl and carbons 2 and 6 are exposed to the ring current of the R substituent.

Equation 1⁶⁾ has been applied to calculate RRC using ¹H-chemical shift of compounds **6—12** (Table 3). The results are given in Table 3.

$$RRC = 200 (D + 0.25) - T \tag{1}$$

where $T=71.7 \ x/(1+2.26 \ x)$, x= the number of ortho substituents in R.

$$D = \delta_{(\gamma\text{-methyl})} - \delta_{(\alpha\text{-methyl})}$$

Furthermore Eq. 2 is suggested by us, as an exten-

tion, to calculate (RRC) using carbon-13 chemical shift of carbons 2 and 4.

Equation 1 was used as a basis to derive Eq. 2 which use carbon-13 chemical shift of carbon 2 and 4 for calculating the RRC. In Eq. 2 T have the same definition as in Eq. 1, and D is given as

$$\delta_{4,2} = D = \delta \text{ (carbon 4)} - \delta \text{ (carbon 2)}.$$
 (1a)

When R=H, there is no ring current affecting carbons 2 and 4. The value of δ_4 and δ_2 in 2,4,6-trimethylpyridinium salt is 147.4 and 157.4 ppm,¹⁶⁾ therefore $\delta_{4,2}$ (-10 ppm) in this compound represents a correction factor for the D values in compounds **5—12**. Equation 1 could be modified as Eq. 1b by taking into account the above $\delta_{4,2}$ value.

$$RRC = a (D + 10) - T.$$
 (1b)

Using compound 5 as a reference (compound) where RRC=100, and D=5.22 ppm (Table 2), applying those values to Eq. 1b, one obtain a value for a=6.57. Thus Eq. 2 could be written as

$$RRC = 6.57 (D+10) - T. (2)$$

The calculated RRC values for compounds **6—12** are given in Table 3.

As it is expected δ_{C-2} and δ_{C-4} are affected by the nature of R. The difference between δ_{C-2} and δ_{C-4} increases in compounds 7-9 (Table 1). This increase might be due to a slight change in ring current of R, which shields C-2 in compounds 5-12 relative to compounds 1—4 (Table 1). These results are consistent with available data, emphasizing the leterature reports that the α -methyl, C-2 and C-6 are oriented in the shielding region of the aromatic ring.¹⁷⁾ It is obvious that the RRC effect decreases when there is one ortho substituent on R (compound 6), or when there is a bulky substituent (compounds 10—12, Table 1). This might suggest a change of the dihedral angle between the two rings relative to that in compound 5. It seems that RRC calculated from carbon-13 chemical shift for compounds 6—12 is more realistic than that obtained from ¹H chemical shift because the steric crowdening will change the dihedral angle thus decrease the RRC. On this basis one expects that the RRC will have a maximum value when R=phenyl (Table 3). This may be explained on the basis that as ortho substituent on R ring increases, the methyl group, carbons 2 and 4 become less exposed to the ring current of R, thus RRC decreases for those compounds relative to compound 5. A rather interesting case is that of compound 2 whose $\Delta \delta_{4,2}=0.71$ ppm. This value is appreciably different from those of compounds 1, 3, and 4 (Table 1). Such apparent inconsistency may be interpreted in terms of the deshielding

Table 1. Chemical Shifts (ppm) of 2,4,6-Trimethylpyridinium

Table 1. Chemical Shifts (ppm) of 2,4,6-Trimethylpyridinium												
	R	δ_2	$\boldsymbol{\delta}_3$	δ_4	$\delta_{\mathrm{CH}_3(lpha)}$	$\delta_{\mathrm{CH_3}(\gamma)}$	$\Delta\delta_{4,2}$	$\Delta\delta_{\gamma,lpha}$	Δδ*	Δδ‡	$\Delta \delta_{lpha}^{f *}$	$\Delta \delta_{\gamma}^{*}$
1	$^7\mathrm{CH}_3$	154.79	127.42	156.83	20.85	21.05	2.04	0.20	0.0	0.0	0.0	0.0
2	∠ 78	156.89	127.91	157.60	20.99	21.53	0.71	0.54	2.10	0.77	-0.14	0.48
3	6 9	154.18	129.57	156.90	20.51	22.04	2.72	1.53	-0.61	0.07	0.34	0.99
4	(14) H ₃ C-CH (7) 13	154.67	129.45	158.63	21.16	22.29	3.96	1.14	-0.12	1.80	-0.31	1.24
5	10 \(\frac{9}{11} \) \(\frac{7}{12} \)	154.03	127.34	159.25	21.34	21.59	5.22	0.25	-0.76	2.42	-0.49	0.54
6	10 7 11 12 CH ₂ CH ₃ 13 14	153.85	127.78	159.69	20.86	21.98	5.84	1.12	-0.94	2.86	0.01	0.93
7	13 14 9 8 CH ₂ CH ₃ 10 7 11 12 C-CH ₃ 15 CH ₃	153.75	128.32	160.15	20.40	21.27	6.40	0.87	-1.04	3.32	0.45	0.22
8	9 8 CH ₃ 10 7 11 12 CH(CH ₃) 14 15	153.54	128.34	160.12	20.19	21.26	6.58	1.07	-1.25	3.29	0.66	0.21
9	13 14 9 8 CH ₂ CH ₃ 10 7 11 12 CH (15) 16 H ₃ C CH ₂ CH ₃	153.86	128.32	160.28	20.51	21.36	6.42	0.85	-0.93	3.45	0.34	0.31
10	13 CH ₃ 10 7 12 C(CH ₃) 14 15 3	154.77	128.44	160.78	20.50	21.59	6.02	1.09	-0.02	3.95	0.35	0.54
11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154.98	127.90	159.98	20.50	21.47	5.00	0.97	0.19	3.15	0.35	0.42
12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154.94	127.98	159.71	20.39	21.44	4.77	1.05	0.15	2.88	0.46	0.39

 $\Delta \delta_x \!\!=\!\! \delta_x \; (\text{compound 1}) \!\!-\!\! \delta_x (\text{other compounds}).$

Table 2. Car	rbon-13 Chemica	l Shift (ppm)	of the R	Substituents
--------------	-----------------	---------------	----------	--------------

								,						
Compd.	δ_7	δ_8	δ_9	δ_{10}	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	δ_{16}	δ_{17}	δ_{18}	δ_{19}	δ_{20}
1	39.59													
2	36.00	10.95	10.95											
3	64.86	29.85	24.74	24.74	29.85									
4	62.58	136.32	130.30	125.12	128.42	125.12	130.30	17.04						
5	137.71	124.96	130.58	130.73	130.58	124.96								
6	136.81	136.17	131.21	128.27	129.85	125.00	21.98	12.42						
7	141.90	133.81	131.46	125.71	127.19	136.46	23.20	12.35	27.37	22.25				
8	142.04	131.07	131.28	125.78	129.59	134.37	27.19	23.19	16.50					
9	141.41	134.16	131.43	127.22	128.46	136.81	22.37	12.42	34.42	20.25	29.83	11.44		
10	142.72	132.26	130.94	129.79	130.44	134.06	36.45	31.47						
11														
12														

Table 3. Proton Chemical Shifts (ppm) of α and γ Methyl Protons and Relative Ring Current

Compd.	$\delta_{\mathrm{CH}_3(lpha)}$	$\delta_{ ext{CH}_3(\gamma)}$	$\Delta\delta_{\gamma ext{-}lpha}$	T	RRC Eq. 1	RRC Eq. 2
1						
2						
3						
4						
5	2.31	2.56	0.25	0	100	100
6	2.25	2.62	0.63	22	84	82
7	2.30	2.64	0.34	26	96	82
8	2.24	2.65	0.41	26	106	83
9	2.28	2.64	0.36	26	96	81
10	2.34	2.63	0.29	26	82	79
11	2.37	2.76	0.39	22	106	99
12	2.41	2.80	0.39	22	104	97

effect of the σ -ring current of the strained cyclopropyl ring on carbon 2.

Experimental

2,4,6-Trimethylpyrylium salts were prepared by reported procedures. 18, 19) They were reacted with aliphatic primary amines to produce compounds 1-4,10 and with aromatic amines to yield compounds 5—12. Carbon-13 spectra were recorded as 20 mol% solution in DMSO-d₆ in 5 mm NMR tubes. Optimum amount of TMS was added to the samples to act as internal reference. The proton-decoupled and proton-coupled carbon-13 NMR spectra were recorded on Varian FT 80 A operating at 20 MHz. The spectral width was 4 KHz, pulse width, 8 μ s (θ =45°); aquisition time 1 s, pulse delay 2 s. Chemical shift were accurate to better than $0.06~\mathrm{ppm}$. The proton spectra were recorded for $5~\mathrm{mol}\%$ solution in CDCl₃ in 5 mm NMR tubes. TMS was added as internal reference. Varian FT 80 A operating at 80 MHz used to record the proton spectra.

References

1) J. W. Verhoeven, I.P. Dirkx, and T. J. Deboer, Tetrahedron Lett., 1966, 4399.

- 2) J. W. Verhoeven, I. P. Dirkx, and T. J. Deboer, Tetrahedron, 25, 3395 (1969).
- 3) A. J. Degee, J. W. Verhoeven, I. P. Dirkx, and T. J. Deboer, Tetrahedron, 25, 3407 (1969).
- 4) J. W. Verhoeven, I. P. Dirkx, and T. J. Deboer, Tetrahedron, 25, 4037 (1969).
- 5) J. W. Verhoeven, I. P. Dirkx, and T. J. Deboer, J. Mol. Specty., 36, 284 (1970).
- 6) A. T. Balaban, A. Dinculescu, H. N. Koutrakis, and F. Chiraleu, Tetrahedron Lett., 1979, 437.
- 7) A. T. Balaban and J. Pure, Appl. Chem., 54, 1075, 1085 (1982).
- 8) R. Maria and J. Elguero, Collect. Czech. Chem. Commun., 46, 584 (1981).
- 9) A. T. Balaban, A. Dinculescu, J. Elguero, and R. Faure, Mag. Reson in Chem., 23, 553 (1985).
- 10) A. H. Hassan, M. Sc. Thesis, Chemistry Department, College of Science, University of Baghdad, 1983.
- 11) F. W. Wehrli, "Interpretation of Carbon-13 Spectra," Heyden, London (1976); G. C. Levy, R. L. Lichter, and G. L. Nelson, "Carbon-13 NMR Spectroscopy," John Wiley & Son, New York (1980); P. E. Hansen, Org. Mag. Reson., 12, 109 (1979)
- 12) D. F. Ewing, Org. Mag. Reson., 12, 499 (1979).
 13) J. W. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972), pp. 111, 250.
- 14) M. Shamma and D. M. Hindelang, "Carbon-13 NMR Shift Assignment of Amines and Alkaloides," Plenum Press, New York (1979).
- 15) A. Camerman, L. H. Jensen, and A. T. Balaban, Acta Crystallogr., Sect. B, 25, 2623 (1969)
- 16) M. Shamma and D. M. Hindenlang, "Carbon-13 NMR Shift Assignments of Amines and Alkaloids," Plenum Press, New York (1979).
- 17) L. M. Jackman and S. Sternhell, "Application of NMR Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, London (1969), pp. 95-98.
- 18) A. R. Katritzky and S. S. Thind, J. Chem. Soc., Perkin Trans. 1, 1980, 1895.
- 19) A. T. Balaban, A. Dinculescu, J. N. Dorofeenko, J. W. Fischer, A. V. Koblik, V. V. Mezheritskii, and V. Schrotr, "Pyrylium Salts, Syntheses, Reactions, and Physical Properties," Advances in Heterocyclic Chemistry, Supplements 2 ed. A. R. Katritzky, Academic Press, London (1982).